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Cancer is a complex cellular mechanism 
that occurs at least by a mutation of five 
or six genes, each mutation alone causes 
changes in the cell.1,2 Colorectal cancer 

(CRC) is one of the most common gastrointestinal 
cancers and has high mortality rates.3 The formation 
of tumors in the rectum, colon, and appendix 
and the extensive and advanced accumulation of 
genetic and epigenetic changes alter the natural 
epithelium of the colon to adenoma and ultimately 
become a malignant tumor.4 As a result of genetic 
and epigenetic changes, colon mucosal cells change 
from normal to cancerous cells.5 Cancer disrupts 
the cellular order, and this cellular disturbance 
directly affects the cell cycle and causes a lack of cell 
differentiation. An increase in the number of cancer 
patients and in the average age of the population 

directly correlates with the increase in cancer in the 
world. In this regard, the genetic and epigenetic 
study of different molecular pathways involved 
in CRC can be beneficial for early diagnosis and 
treatment.6–10 Many genes are involved in different 
molecular mechanisms in the carcinogenic pathway, 
including MYC, SMAD2/3, and DNMT3A. In 
this review, we discuss the performance of MYC, 
SMAD2/3, and DNMT3A and the role they play in 
carcinogenesis.11,12

Fluctuation of genes
MYC is transmitted by the avian myelocytomatosis 
virus, and viral promoters widely regulate the extent 
of the gene.13 Some noticeable changes occur in 
the expression of MYC oncogene and increase the 
process of cell deformation. At least three different 
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A B S T R AC T
Epigenetic modifications, particularly DNA methylation, is commonplace and a 
remarkable factor in carcinogenesis transformation. Conspicuously, previous findings have 
presented a cluster of irregular promoter methylation alterations related with silencing of 
tumor suppressor genes, little is accepted regarding their sequential DNA methylation 
(hypo and hyper) modifications during the cancer progression. In this way, fluctuations 
of DNA methylation of many genes, especially MYC, SMAD2/3, and DNMT3A, have an 
impressive central key role in many different cancers, including colorectal cancer (CRC). 
CRC is distinguished by DNA methylation, which is related to tumorigenesis and also 
genomic instability. Importantly, molecular heterogeneity between multiple adenomas 
in different patients with CRC may show diverse developmental phenotypes for these 
kinds of tumors. Conclusively, studying factors that are involved in CRC carcinogenesis, 
especially the alterations in epigenetic elements, such as DNA methylation besides 
RNA remodeling, and histone modification, acetylation and phosphorylation, can be 
influential to find new therapeutic and diagnostic biomarkers in this type of malignancy. 
In this account, we discuss and address the potential significant methylated modifications 
of these genes and their importance during the development of CRC carcinogenesis.
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mechanisms can produce MYC oncogene. In 
several human tumors, the amount of MYC gene is 
determined by its natural expression promoters. Still, 
the number of copies of this gene is several times 
more than the number of copies in the normal human 
genome.14 In 30% of children’s neuroblastoma, a 
similar gene called N-MYC is also widely distributed 
in malignant tumors [Figure 1]. In both cases, the 
increase in these genetic copies increases the level 
of the produced gene. Another point is that MYC 
family proteins have a very significant effect on 

cell growth.15 Consequently, when they are present 
in large quantities, they cause uncontrolled cell 
proliferation. MYC proto-oncogenes, commonly 
referred to as C-MYC, are distinct from the two 
N-MYC and L-MYC genes. Human MYC genes 
are seen in a variety of human tumors.16 In addition 
to genetic and environmental factors, epigenetic 
factors play a vital role in carcinogenesis. These 
factors include histone changes, acetylation, 
phosphorylation, and DNA methylation.17,18 

DNA methylation, an essential epigenetic 
agent, is a common feature in vertebrates, and one 
of the main epigenetic mechanisms is the control 
of gene expression.19 Methylation changes can be 
eliminated or transferred to the next generation 
without changing the nature of the DNA. Also, 
CpG methylation is one of the most critical 
molecular processes in carcinogenesis. The study of 
promoter hypermethylation can create new hopes 
and achievements to achieve molecular diagnostic 
markers of cancer. 

In the case of the SMAD gene, the proteins 
encoded by these genes belonging to the SMAD 
group of proteins are similar to those of Drosophila 
melanogaster genes (Elegans SMAD gene).20 
The SMAD proteins are a signal transducer and 
transcription modulator that interfaces multiple 
signaling pathways. These proteins are the main 
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Figure 1: Significance of inhibitors like CDK7, 
BRD4, and CDK9 in pathways including AKT, 
mTOR, and PI3K, which inhibit MYC expression.
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signal transducers for the transforming growth 
factor-beta (TGF-β) superfamily receptors, 
which are critical for regulating cell proliferation, 
apoptosis, and differentiation.21 In response to the 
signal, TGF-β superfamily ligands bind to a type II 
receptor, which recruits and phosphorylates a type 
I receptor. The type I receptor then phosphorylates 
receptor-regulated SMADs (R-SMADs), which 
can now bind coSMAD and SMAD4. R-SMAD/
coSMAD complexes accumulate in the nucleus, 
where they act as transcription factors and 
participate in regulating target gene expression.22 
besides SMAD2, which is a protein-encoding gene, 
major diseases associated with SMAD2 include 
urogenital disease and many common cancers.23 
The pivotal paralog of the SMAD2 is the SMAD3 
[Figure 2]. Human immunohistochemistry 
assessment of SMAD3/SMAD2 phosphorylation 
and p300 activator showed association with human 
glomerulonephritis and renal injury.24 Also, SMAD2 
and SMAD4 mutations in the TGF-β-SMAD 
signaling pathway have been proven in head and 
neck carcinoma.25 In addition, the SMAD pathway 
is also active in scleroderma fibroblast, and the 
level of SMAD2/3 phosphoryl and the site of the 
SMAD2/3 phosphoryl was increased.26 SMAD2/3/4 
heterodimers correspondingly regulate SMDA2/3/4 
transcriptional activity. The SMAD3 gene produces 
a protein involved in transmitting chemical signals 
from the cell surface to the nucleus.27 This signaling 
process begins when TGF-β protein binding to a 
receptor on the cell surface and activates a group of 

SMAD proteins such as SMAD2 and SMAD3.28 
These SMAD proteins form a complex with SMAD4 
and then accumulate in the nucleus and binds to 
specific regions of DNA to control the activity of 
particular genes. Through the TGF-β signaling 
pathway, the SMAD2/3 proteins also affect many 
aspects of cellular processes, including growth and 
division (proliferation), cell movement (migration), 
and cell death (apoptosis).29 

Another enzyme is the DNA (cytosine-5)-
methyltransferase 3A (DNMT3A) that is encoded 
in humans by the DNMT3A gene [Figure 3].30 
DNMT3A catalyzes the transfer of methyl groups 
to specific CpG structures in DNA, a process called 
DNA methylation.31 DNA methylation plays a role 
in many cellular functions, such as gene expression 
regulation, protein and lipid reaction regulation, 
and chemical processing control in nervous system 
signaling that by DNMT3A occurs through 
methylation during evolution.32 This enzyme can 
also lead to the formation of more mature cell types 
in the early cells. In early blood stem cells called 
hematopoietic stem cells, methylation patterns are 
generated by the DNMT3A, which develops the 
differentiation to different types of blood cells.33–36

Induction of epigenetics elements in 
carcinogenesis and tumorogenesis
Epigenetic elements include DNA methylation, 
histone modification, histone acetylation, histone 
phosphorylation, and RNA remodeling. The most 
important is DNA methylation.37 Additionally, 
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Figure 3: Role of DNA methyltransferases in embryonic and somatic stem cells.
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all these elements indicated their remarkable and 
impressive role in carcinogenesis and tumorogenesis.38 
Unlike changes related to the main DNA sequence, 
such as mutations, most epigenetic changes are 
reversible. Naturally, phenomena such as genomic 
imprinting, inactivation of the X chromosome, and 
the expression of gene sets that are important in the 
process of embryonic development are controlled 
by epigenetic mechanisms.39,40 In recent decades, 
studies have shown that epigenetic alteration 
patterns and genetic changes in some genes play 
an important role in tumorigenesis. These changes 
include abnormal methylation patterns in gene 
regulation, histone modification, and alterations 
in miRNA expression.41 Recent studies suggest 
that the abnormal methylation pattern on CpG 
islands is effective in tumor cell proliferation. 
The increase in the methylation of the regulatory 
regions of tumor suppressor genes and DNA 
repair leads to the extinction of these genes and 
the development of cancer. On the other hand, 
the reduction of methylation in the regulatory 
regions of oncogenes increases their expression 
and leads to the conduction of cells to tumors.42 
This mechanism is involved in the development 
of cancer cells by activating the enzymes involved 
in cell growth and survival of apoptosis and the 
cell cycle.43

because DNA has an important role in replication 
and transcription and ultimately cell proliferation, 
the most important targets are regulatory molecules 
and anticancer drugs.44

DNA methylation is regulated by the DNA 
methyltransferase enzyme. Increased expression of 
DNA methyltransferase appears to be a common 
feature in a variety of cancers. Methylation patterns 
are inherited through mitosis. These normal patterns 
are disrupted in the DNA of the cancer cell; CpG 
islands are prone to methyltransferase activity 
and other areas of DNA are hypotensive.45 The 
hypermethylation profile of CpG islands varies in 
different genes for each type of cancer. In general, 
hypermethylation of CpG islands occurs in tumor 
suppressor genes, and genes involved in the cell cycle, 
DNA repair, carcinogenic metabolism, intercellular 
interactions, cell death and regression, and promotes 
cancer progression.46

Performance of DNA methylation in CRC
Investigating gene expression in gastrointestinal 
cancers to evaluate their fluctuations, alongside 
any epigenetics alterations, is of great importance  
[Table 1].47–51 Remarkably, the mechanisms 
underlying CRC pathobiology remain subjects of 
wide study in the pathogenesis of cancer. Genetic 
and epigenetic modifications have resulted in 
CRC and also, the cellular genome that transforms 
normal glandular epithelium into adenocarcinoma 
is involved in this process.52,53 Conspicuously, the 
evaluation of methylated genes in CRC has also 
revealed a unique molecular subgroup of CRCs 
called CpG island methylator phenotype cancers; 
these tumors have a high frequency of methylated 
genes. In addition to DNA hypermethylation that 

Table 1: Main models of involved genomic uncertainty in colon cancer.

Main disorders Main genes Phenotypic characteristics Type of defect

Sporadic colorectal cancer 
with mismatch repair 
deficiency

MlH1 somatic 
methylation

Colorectal cancer with increased risk of poor 
differentiation, more commonly located 
in the right colon, less aggressive clinical 

behavior than tumors without mismatch repair 
deficiency

Somatic

base excision repair defect 
MYH-associated polyposis

MYH Development of 15 or more colorectal 
adenomas with increased risk of colorectal 

cancer

Germline

Chromosomal instability- loss 
of heterozygosity at multiple 
loci

loss of 
heterozygosity at 
APC, TP53, and 

SMAD4

Characteristic of 80% to 85% of sporadic 
colorectal cancers, depending on stage

Somatic

CpG island methylator 
phenotype-methylation target 
loci

Target loci MlH1, 
MINT1 MINT2, 

and MINT3

Characteristic of 15% of colorectal cancers, 
with most showing mismatch repair deficiency 

from loss of tumor MlH1 expression

Somatic

DNA mismatch repair defects. 
Hereditary nonpolyposis 
colorectal cancer

MlH1, MSH2, and 
MSH6 germline 
gene mutations

Multiple primary colorectal cancers, 
accelerated tumor progression, and increased 

risk of endometrial, gastric, and urothelial 
tumors

Germline
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often takes place in the promoter region of tumor 
suppressor genes, epigenetic regulation of CRC 
epigenome also includes histone post-translational 
modifications, primarily histone acetylation and 
methylation that also play critical roles in the 
regulation of expression of oncogenes and tumor 
suppressor genes.52,54,55 In this way, epigenetics alludes 
to heritable gene expression modifications that are 
not mediated by alterations in the DNA sequence. 
The epigenetic regulation of gene expression happens 
in normal tissue and plays a key role in many cellular 
activities, including tissue differentiation, embryonic 
development, and imprinting.56

In 1982, aberrant epigenetic modifications were 
first explored in CRC. Noticeably, the epigenetic 
study has indicated an epigenetic landscape 
comprising an elaborate array of epigenetic regulatory 
mechanisms that control gene expression in tumor 
and non-tumor tissues.57,58 The epigenetic landscape 
is largely a reflection of agents that ascertain 
the condensation state of the chromatin, which 
identifies whether the DNA is related to proteins 
that manage the gene transcription. A relaxed or 
open chromatin state permits gene transcription, 
whereas a condensed chromatin state prevents gene 
transcription.56 Evidently, it is confirmed that the 
DNA methylation seen in cancer and aging may stem 
from a small population of cells. Notably, not only are 
the target sites found partially methylated in normal 
tissues but are also highly altered in polyps,59 a very 
early stage in the generation of colon cancer in men. 
It reveals that a subpopulation of stem cells in the 
colon undergoes de novo methylation of target CpG 
islands during aging, which presumably generates 
small patches of tissue that carry an aberrant DNA 
methylation profile.60–62 This alteration probably 
induces a state of constitutive heterochromatin, 
which is not easily reversible. Thus, proliferative 
cells in the crypt that transform this sign may have 
the ability to skip the polycomb structure itself, 
but would not be capable of activating the critical 
differentiation genes, thereby inhibiting these cells 
from undergoing a transition to the epithelium, 
thus leaving them in a relatively proliferative state. 
Although this might not be sufficient for generating 
a tumor, it could very well provide the necessary 
background for cells that have transformed either 
through prior genetic predisposition or spontaneous 
mutation. These particular cells collect and organize 
DNA methylation during aging and then perform 

as preferred targets for the transformation process, 
which is protected by the observation that both 
polyps and normal tissue surrounding the tumor 
are highly methylated and by the experimental 
evidence showing that 5-azacytidine is only capable 
of preventing the accumulation of intestinal tumors 
in mice if it originates from early in life.59,63,64 As 
DNA methylation plays a significant role in CRC 
formation, it can be used as a potential diagnostic 
biomarker in cancer detection.65 Considerably, some 
gene promoter methylation in the plasma or serum 
of patients with CRC has shown great promise as a 
potential diagnostic indicator of CRC. 

To date, a lot of hypermethylated genes have been 
reported in CRC, but only a few have been included 
in commercial blood-based tests. Studies are needed 
to find new practical biomarkers for prognosis that 
would aid researchers and practitioners in decision-
making. High-throughput technologies, such 
as methylation microarrays and next generation 
sequencing, have helped advance our understanding 
of epigenetic events at the genomic level.66–68

Role of DNA methylation of SMAD2/3, MYC, 
and DNMT3A in CRC
Aberrant de novo methylation of DNA is considered 
a remarkable mediator of tumorigenesis. The 
processes that mediate aberrant DNA hyper- and 
hypo-methylation are under study. Although certain 
mechanisms have yet to be identified, it is now 
clear that DNA methylation is regulated through 
reciprocal interactions with histones. Modifications 
in the post-translational state of histones are closely 
related to cancer-related alterations in DNA 
methylation.69 The enzymes that mediate DNA 
methylation, DNMT1, DNMT3A, and DNMT3B, 
are overexpressed, hyperactive, or misdirected. 
Increased DNMT expression has been proposed as a 
mechanism for the increased methylation seen in the 
promoter region of tumors. Compared to normal 
tissues, the increased expression and increased 
function of the DNA methyltransferases (DNMTs) 
have been reported in human cancers, including 
colon cancer.70 DNMTs catalyze the addition of 
a methyl group to the 5-cytosine residue of CpG 
dinucleotides. This family of enzymes comprises 
DNMT1 that performs as a DNA maintenance 
methyltransferase, and DNMT3A and DNMT3B 
that methylate previously unmethylated regions of 
DNA and are required for genome-wide de novo 
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DNA methylation. DNMT3A protein expression in 
human tissue samples and its potential inhibition by 
DNMT inhibitors remains unclear.71 MYC protein 
has been implicated in development through the 
cell cycle and in differentiation-related regulation 
of transcription. Additionally, overexpressed MYC 
protein in dysplastic and tumor cells, accumulating 
in the cytoplasm and transferring persistently to 
the nucleus, may modify the cellular response to 
growth factors and abrogate normal growth control 
mechanisms by controlling cells from escaping from 
the proliferation cycle.72 Conspicuously, C-MYC 
protein may manage its expression fluctuation 
via binding process, directly or indirectly, to the 
C-MYC gene. If this interaction is influenced by 
DNA methylation,73,74 there may be a feedback 
effect between hypomethylation of the third exon 
of MYC and deregulation of expression. One study 
indicated that a 34-base pair sequence spanning 
the CCGG site of the C-MYC third exon exhibits 
methylation-dependent binding of particular 
protein species from normal colonic epithelium; 
dysplastic tissue yields a modified binding pattern.75 
Changes in the downstream methylation model 
may influence MYC expression by binding trans-
acting agents, either directly or via induction of 
long range conformational alterations. The TGF-β 
pathway plays a key role in embryonic development, 
organ homeostasis, tissue repair, and disease.76,77 
This diversity of tasks is achieved through the 
intracellular effector SMAD2/3, whose canonical 
function is to control the activity of target genes 
by interacting with transcriptional regulators.78 
Despite that, a complete description of the factors 
interacting with SMAD2/3 in any given cell 
type is still lacking. SMAD2/3 could act as a hub 
coordinating several proteins known to have a role 
in mRNA processing and alteration, apoptosis, 
DNA repair, and transcriptional regulation.79 
Remarkably, in the therapeutic approach, a 
probiotic strategy like using gut microbiota is of 
great importance.80

The key role of microRNAs in carcinogenesis
based on the chemical structure of RNA, which is 
made up of only four flat bases and the nucleotides 
have a negative charge, it seems that the drug 
target is not promising. However, RNA molecules 
can bind to small molecules. The binding of small 
ligands to RNA by blocking macromolecule binding 

changes the active RNA configuration, induces 
a sub-configuration on the RNA, and inhibits 
the RNA catalytic activity, affecting its biological 
activity. Some herbal anticancer compounds, such 
as curcumin in turmeric, interact with RNA. More 
than 80% of the genome is actively grouped with 
RNA transcripts, referred to as non-coding RNAs. 
This group includes tRNA, rRNA, small nuclear 
RNA involved in splicing, and microRNA.81

MicroRNAs are a type of non-coding RNA that 
is fully protected nucleotides during evolution. 
These molecules are induced by binding to 3’UTR 
inhibiting translation or induction. Epigenetic 
factors reduce the expression of microRNAs by 
over-methylation of gene promoters or histone 
modifications. Increased expression of microRNAs 
in cancer cells could be due to the proliferation 
and lack of control of a transcription factor or 
demethylation of CpG islands in gene promoter 
areas.82 It is not yet clear whether the change in 
microRNA expression is the result of a pathological 
state of cancer or whether cancer is the main cause 
of these changes. However, many microRNAs, 
especially the two groups of oncogenic microRNAs 
and tumor inhibitors, are abnormally expressed 
in cancer cells.83 Epigenetic factors reduce the 
expression of microRNAs by overmethylation of 
gene promoters or histone modifications.

C O N C LU S I O N
Cancer is a genetic disease that occurs due to 
sequential mutations in human genes and genetic 
and environmental factors. CRC is one of the most 
prevalent lethal forms of cancer worldwide. Several 
mechanisms are involved in cancer development, 
which play major roles in altering cellular signaling 
and cancer formation. Oncogenes, tumor suppressor 
genes, apoptosis genes, and restorative genes 
are among the major factors in cancerous cells. 
These genes are responsible for controlling the 
differentiation and growth of the cells. Consequently, 
the mutation in these genes causes the normal 
process of the cell to become cancerous. Oncogenes 
are also activated by mutation in the original genes 
and converted to proto-oncogenes. Mutations in 
tumor suppressor genes also cause abnormal cell 
division and transform healthy cells into cancerous 
ones. Another factor is programmed cell death 
(apoptosis), which is the last cellular escape from 
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the cancerous process. Therefore, studying all factors 
involved in carcinogenesis, particularly the changes 
in epigenetic factors, such as DNA methylation, 
is useful in identifying diagnostic and therapeutic 
biomarkers in CRC.
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